تالار گفتگوی هنرستان فنی و حرفه ای علم و صنعت شیراز
هل تريد التفاعل مع هذه المساهمة؟ كل ما عليك هو إنشاء حساب جديد ببضع خطوات أو تسجيل الدخول للمتابعة.

ghonak konandeh

اذهب الى الأسفل

ghonak konandeh Empty ghonak konandeh

پست  saeedseade الخميس مايو 08, 2008 11:06 am

همان طور که می‌دانید، برخورد نوترونها با سوخت هسته ای درون میله های سوخت، موجب شکافت هسته اتمها می‌شود و این فرآیند هم به نوبه خود، گرما و نوترونهای بیشتری آزاد می‌کند. اگر این حرارت آزاد شده منتقل نشود، ممکن است میله های سوخت ذوب شوند و ساختار کنترلی رآکتور از بین برود ( و البته خطرهای مرگ آوری که به دنبال آن روی می‌دهند. ) در PWR، میله های سوخت به صورت یک دسته در ساختاری، ترسیمی قرار گرفته اند و آب از کف رآکتور به بالا جریان پیدا می‌کند. آب از میان این میله های سوخت عبور می‌کند و به شدت گرم می‌شود، به طوری که به دمای 325 درجه سانتی گراد می‌رسد. درمبدل حرارتی، این آب داغ موجب داغ شدن آب در چرخه دوم می‌شود و بخاری با دمای 270 درجه سانتی گراد تولید می‌کند تا توربین را بچرخاند.

کند کننده
نوترونهای حاصل از یک شکافت هسته ای بیش از آن حدی گرمند که بتوانند یک واکنش شکافت هسته ای را آغاز کنند. انرژی آنها را باید کاهش داد تا با محیط اطراف خود به تعادل گرمایی برسند. محیط اطراف نوترونها ( قلب رآکتور ) دمایی در حدود 450 درجه سانتی گراد دارد.
در یک PWR، نوترونها در پی برخورد با مولکولهای آب خنک ساز، انرژی جنبشی خود را از دست می‌دهند؛ به طوری که پس از 8 تا 10 برخورد ( البته به طور متوسط ) با محیط هم دما می‌شوند. در این حالت، احتمال جذب نوترونها از سوی هسته U-235 بسیار زیاد است ودر صورت جذب، بالافاصله هسته U-236 جدید دچار شکافت می‌شود.
مکانیسم حساسی که هر رآکتور هسته ای را کنترل می‌کند، سرعت آزاد سازی نوترونها در طول یک فرآیند شکافت است به طور متوسط از هر شکافت، دونوترون و مقدار زیادی انرژی آزاد می‌شود. نوترونهای آزاد شده اگر با هسته U-235 دیگری برخورد کنند، شکافت دیگری را سبب می‌شوند و در نهایت یک واکنش زنجیره ای روی می‌دهد. اگر تمام این نوترونها در یک لحظه آزاد شوند، تعدادشان به قدری زیاد می‌شود که باعث ذوب شدن راکتور خواهد شد. ( تعداد ذرات پر انرژی، دمای یک سیستم را تعیین می‌کند. معادله بوتنرمن، این ارتباط را توصیف می‌کند. ) خوشبختانه برخی از این نوترونها پس از یک بازه زمانی نه چندان کوتاه ( حدود یک دقیقه ) تولید می‌شوند و سبب می‌شوند دیگر عوامل کنترل کننده از این تاخیر زمانی استفاده کرده، اثر خود را داشته باشند.
یکی از مزیت های استفاه از آب در PWR، این است که اثر کند سازی آب با افزایش دما کاهش می‌یابد. در حالت عادی، آب در فشار 150 برابر فشار یک اتمسفر قرار دارد ( حدود 15 مگا پاسکال ) و در قلب رآکتور به دمای 325 درجه سانتی گراد می‌رسد. درست است که آب با فشار پانزده مگا پاکسال در این دما جوش نمی آید، ولی به شدت از خاصیت کند کنندگی اش کاسته می‌شود، بنابراین آهنگ واکنش شکافت هسته ای کاهش می‌یابد، حرارت کمتری تولید می‌شود و دما پایین می‌آید. دما که کاهش یابد، توان رآکتور افزایش می‌یابد و دما که افزایش یابد توان راکتور کاهش می‌یابد؛ پس خود سیستم PWR دارای یک سیستم خود تعادلی در رآکتور است و تضمین می‌کند توان رآکتور در کمترین میزان مورد نیاز برای تأمین گرمای سیستم بخار ثانویه است.
در اغلب رآکتورهای PWR، توان رآکتور را در دوره فعالیت معمولی با تغییرات غلظت بورون ( در شکل اسید بوریک ) در چرخه خنک کننده اولیه کنترل اولیه کنترل می‌کنند سرعت جریان خنک کننده اول در رآکتورهای PWR معمولی ثابت است. بورون یک جذب کننده قوی نوترون است و با افزایش یا کاهش غلظت آن، می‌توان شدت فعالیت راکتور را کاهش یا افزایش داد. برای این کار، یک سیستم کنترلی پیچیده شامل پمپ های فشار بالا که آب را در فشار 15 مگا پاسکال از چرخه خارج می‌کند، تجهیزات تغییر غلظت اسید بوریک و تزریق مجدد آب به چرخه خنک ساز مورد نیاز است.
یکی از اشکالات راکتورهای شکافت، این است که حتی پس از توقف واکنش شکافت، هنوز هم واپاشی های رادیواکتیوی انجام می‌شود و حرارت زیادی آزاد می‌شود که می‌تواند راکتور را ذوب کند. البته سیستم های حفاظتی و پشتیبانی متعددی برای جلوگیری از این واقعه وجود دارند، با این حال ممکن است در اثر پیچیدگی های این سیستم، برهمکنش های پیش بینی نشده یا خطاهای عملیاتی مرگ آفرینی در شرایط اضطراری روی دهند. در نهایت، هر رآکتور با یک حفاظ ساختمانی بتونی احاطه شده است که آخرین سد در برابر تشعشعات رادیواکتیو است.

رآکتور آب جوشان، BWR
در رآکتور آب جوشان، از آب سبک استفاده می‌شود. آب سبک، آبی است که در آن فقط هیدروژن معمولی وجود دارد. ) BWR اختلاف زیادی با رآکتور آب تحت فشار ندارد، غیر از اینکه در BWR فقط یک چرخه خنک کننده وجود دارد و آب مستقیما در قلب راکتور به جوش می‌آید. فشار آب در BWR کمتر از PWR است، به طوری که در بیشترین مقدار به 75 برابر فشار جو می‌رسد ( 5/7 مگا پاسکال ) و بدین ترتیب آب در دمای 285 درجه سانتی گراد به جوش می‌آید.
رآکتور BWR به شکلی طراحی شده که بین 12 تا 15 درصد آب درون قلب رآکتور به شکل بخار در قسمت بالای آن قرار می‌گیرد. بدین ترتیب عملکرد بخش بالایی و پایینی هسته رآکتور با هم تفاوت دارند. در بخش بالایی قلب رآکتور، کند سازی کمتری صورت می‌گیرد و در نتیجه بخش بالایی کمتر است.
در حالت کلی دو مکانیسم برای کنترل BWR وجود دارد: استفاده از میله های کنترل و تغییر جریان آب درون راکتور.
الف - بالا بردن یا پایین آوردن میله های کنترل، روش معمولی کنترل توان رآکتور در حالت راه اندازی رآکتور تا رسیدن به 70 درصد حداکثر توان است. میله های کنترل حاوی مواد جذب کننده نوترون هستند؛ در نتیجه پایین آوردن آنها موجب افزایش جذب نوترون در میله ها، کاهش جذب نوترون در سوخت و درنهایت کاهش آهنگ شکافت هسته ای و پایین آمدن توان رآکتور می‌شود. بالا بردن میله های سوخت دقیقاً نتیجه معکوس می‌دهد.
ب - تغییرات جریان آب درون رآکتور، زمانی برای کنترل رآکتور مورد استفاده قرار می‌گیرد که راکتور بین 70 تا صد درصد توان خود کار می‌کند. اگر جریان آب درون رآکتور افزایش یابد، حباب های بخار در حال جوش سریع تر از قلب راکتور خارج می‌شوند و آب درون قلب رآکتور بیشتر می‌شود. افزایش مقدار آب به معنی افزایش کندسازی نوترون و جذب بیشتر نوترونها از سوی سوخت است و این یعنی افزایش توان راکتور. با کاهش جریان آب درون رآکتور، حباب‌ها بیشتر در رآکتور باقی می‌مانند، سطح آب کاهش می‌یابد و به دنبال آن کندسازی نوترونها و جذب نوترون هم کاهش می‌یابد و در نهایت توان رآکتور کاهش می‌یابد.
بخار تولید شده در قلب رآکتور از شیرهای جدا کننده بخار و صفحات خشک کن ( برای جذب هر گونه قطرات آب داغ ) عبور می‌کند و مستقیماً به سمت توربین های بخار که بخشی از مدار رآکتور محسوب می‌شوند، می‌رود. آب اطراف رآکتور همواره در معرض تابش و آلودگی رادیواکتیو است و از آنجا که توربین هم در تماس مستقیم با این آب است، باید پوشش حفاظتی داشته باشد. اغلب آلودگی های درون آب عمر کوتاهی دارند ( مانند N16 که بخش اعظم آلودگی های آب را تشکیل می‌دهد و نیمه عمرش تنها 7 ثانیه است )، بنابراین مدت کوتاهی پس از خاموش شدن رآکتور می‌توان به قسمت توربین وارد شد.
در رآکتور BWR، افزایش نسبت بخار آب به آب مایع درون رآکتور موجب کاهش گرمای خروجی می‌شود. با این حال، یک افزایش ناگهانی در فشار بخار، سبب بروز یک کاهش ناگهانی در نسبت بخار به آب مایع درون رآکتور می‌شود که خود، سبب افزایش توان خروجی می‌شود. این شرایط و دیگر حالت های خطرساز، موجب شده است از سیستم کنترلی اسید بوریک ( بورون ) نیز استفاده شود، بدین شکل که در سیستم پشتیبان خاموش کننده اضطراری، محلول اسید بوریک با غلظت بالا به چرخه خنک کننده تزریق می‌شود. خوبی این سیستم این است که اسید اوریک، یک خورنده قوی است و معمولا در PWR سبب می‌شود تلفات ناشی از خوردگی قابل توجه باشد. در بدترین شرایط اضطراری که تمام سیستم های امنیتی از کار افتاد، هر رآکتور به وسیله یک ساختمان حفاظتی از محیط اطراف جدا شده است. در یک رآکتور BWR جدی، حدود 800 دسته واحد سوخت قرار می‌گیرد و در هر دسته بین 74 تا 100 میله سوخت قرار می‌گیرد. این چنین حدود 140 تن اورانیوم در قلب رآکتور ذخیره می‌شود.

saeedseade

تعداد پستها : 6
تاريخ التسجيل : 2008-05-08

بازگشت به بالاي صفحه اذهب الى الأسفل

بازگشت به بالاي صفحه


 
صلاحيات هذا المنتدى:
شما نمي توانيد در اين بخش به موضوعها پاسخ دهيد